193 research outputs found

    Overlapping stochastic block models with application to the French political blogosphere

    Full text link
    Complex systems in nature and in society are often represented as networks, describing the rich set of interactions between objects of interest. Many deterministic and probabilistic clustering methods have been developed to analyze such structures. Given a network, almost all of them partition the vertices into disjoint clusters, according to their connection profile. However, recent studies have shown that these techniques were too restrictive and that most of the existing networks contained overlapping clusters. To tackle this issue, we present in this paper the Overlapping Stochastic Block Model. Our approach allows the vertices to belong to multiple clusters, and, to some extent, generalizes the well-known Stochastic Block Model [Nowicki and Snijders (2001)]. We show that the model is generically identifiable within classes of equivalence and we propose an approximate inference procedure, based on global and local variational techniques. Using toy data sets as well as the French Political Blogosphere network and the transcriptional network of Saccharomyces cerevisiae, we compare our work with other approaches.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS382 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Defining a robust biological prior from Pathway Analysis to drive Network Inference

    Get PDF
    Inferring genetic networks from gene expression data is one of the most challenging work in the post-genomic era, partly due to the vast space of possible networks and the relatively small amount of data available. In this field, Gaussian Graphical Model (GGM) provides a convenient framework for the discovery of biological networks. In this paper, we propose an original approach for inferring gene regulation networks using a robust biological prior on their structure in order to limit the set of candidate networks. Pathways, that represent biological knowledge on the regulatory networks, will be used as an informative prior knowledge to drive Network Inference. This approach is based on the selection of a relevant set of genes, called the "molecular signature", associated with a condition of interest (for instance, the genes involved in disease development). In this context, differential expression analysis is a well established strategy. However outcome signatures are often not consistent and show little overlap between studies. Thus, we will dedicate the first part of our work to the improvement of the standard process of biomarker identification to guarantee the robustness and reproducibility of the molecular signature. Our approach enables to compare the networks inferred between two conditions of interest (for instance case and control networks) and help along the biological interpretation of results. Thus it allows to identify differential regulations that occur in these conditions. We illustrate the proposed approach by applying our method to a study of breast cancer's response to treatment

    Incomplete graphical model inference via latent tree aggregation

    Get PDF
    Graphical network inference is used in many fields such as genomics or ecology to infer the conditional independence structure between variables, from measurements of gene expression or species abundances for instance. In many practical cases, not all variables involved in the network have been observed, and the samples are actually drawn from a distribution where some variables have been marginalized out. This challenges the sparsity assumption commonly made in graphical model inference, since marginalization yields locally dense structures, even when the original network is sparse. We present a procedure for inferring Gaussian graphical models when some variables are unobserved, that accounts both for the influence of missing variables and the low density of the original network. Our model is based on the aggregation of spanning trees, and the estimation procedure on the Expectation-Maximization algorithm. We treat the graph structure and the unobserved nodes as missing variables and compute posterior probabilities of edge appearance. To provide a complete methodology, we also propose several model selection criteria to estimate the number of missing nodes. A simulation study and an illustration flow cytometry data reveal that our method has favorable edge detection properties compared to existing graph inference techniques. The methods are implemented in an R package

    Inferring Multiple Graphical Structures

    Full text link
    Gaussian Graphical Models provide a convenient framework for representing dependencies between variables. Recently, this tool has received a high interest for the discovery of biological networks. The literature focuses on the case where a single network is inferred from a set of measurements, but, as wetlab data is typically scarce, several assays, where the experimental conditions affect interactions, are usually merged to infer a single network. In this paper, we propose two approaches for estimating multiple related graphs, by rendering the closeness assumption into an empirical prior or group penalties. We provide quantitative results demonstrating the benefits of the proposed approaches. The methods presented in this paper are embeded in the R package 'simone' from version 1.0-0 and later

    Clustering based on Random Graph Model embedding Vertex Features

    Full text link
    Large datasets with interactions between objects are common to numerous scientific fields (i.e. social science, internet, biology...). The interactions naturally define a graph and a common way to explore or summarize such dataset is graph clustering. Most techniques for clustering graph vertices just use the topology of connections ignoring informations in the vertices features. In this paper, we provide a clustering algorithm exploiting both types of data based on a statistical model with latent structure characterizing each vertex both by a vector of features as well as by its connectivity. We perform simulations to compare our algorithm with existing approaches, and also evaluate our method with real datasets based on hyper-textual documents. We find that our algorithm successfully exploits whatever information is found both in the connectivity pattern and in the features

    Weighted-Lasso for Structured Network Inference from Time Course Data

    Full text link
    We present a weighted-Lasso method to infer the parameters of a first-order vector auto-regressive model that describes time course expression data generated by directed gene-to-gene regulation networks. These networks are assumed to own a prior internal structure of connectivity which drives the inference method. This prior structure can be either derived from prior biological knowledge or inferred by the method itself. We illustrate the performance of this structure-based penalization both on synthetic data and on two canonical regulatory networks, first yeast cell cycle regulation network by analyzing Spellman et al's dataset and second E. coli S.O.S. DNA repair network by analysing U. Alon's lab data
    • …
    corecore